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C O N S P E C T U S

For decades, the enigma of the hydrophobic force has captured the imagination of
scientists. In particular, Frank and Evans’ idea that the hydrophobic effect was

mainly due to some kind of “iceberg” formation around a hydrophobic solute stim-
ulated many experiments and molecular dynamics simulation studies. A better under-
standing of hydrophobic interactions will aid understanding in many contexts including
protein structural dynamics and functioning in biological systems.

In this Account, we present results of two-dimensional infrared (2D IR) spectros-
copy experiments on the OH-stretch vibrational mode of water molecules near hydro-
phobic groups in concentrated solutions with tetramethylurea (TMU). The frequency
of the OH vibration is a sensitive probe for environmental dynamics and, in partic-
ular, for the strength of the hydrogen bond. Two-dimensional IR spectroscopy can
trace time correlations of the vibrational frequency at the scale of hundreds of fem-
toseconds and thus provides valuable insight into the effect of hydrophobic solutes
on the dynamics of a hydrogen-bond network. We compare the 2D spectroscopic
results with molecular dynamics (MD) simulations to obtain a microscopic picture of
hydrophobic solvation.

We observe two different types of hydrogen-bond dynamics in the water/TMU mix-
tures. We attribute the “fast” (∼100 fs) dynamics to highly coordinated water molec-
ular-jump reorientations and assigned the “slow” (>1 ps) dynamics to water trans-
lational motions that are strongly suppressed by the TMU molecules. Molecular
dynamics simulations demonstrate a clear correlation between the slowed dynamics and the translational mobility of water.
This finding indicates that the molecular-jump reorientations are switched off near hydrophobic groups. The fifth water mol-
ecule, which is required to form a defect state in the tetrahedral surroundings, cannot approach the hydrogen-bonded pair
to initiate the molecular jump. As a result, the rate of the jumping events sharply decreases, which, in turn, strongly slows
the rotation of the water molecules. Our findings suggest that water molecules in the hydrophobic solvation shell do not
exhibit an increased tetrahedral ordering compared with the bulk but that the hydrogen-bond dynamics in the two cases
are different. This result also indicates that consideration of a hydrogen bond’s dynamics could be critical for its definition.

Introduction

Ever since Langmuir suggested that hydrophobic-

ity is an important factor for folding proteins into

compact globular structures,1 physical and pro-

tein chemists have been actively engaged in

experiments to get a grasp of the hydrophobic

force. A particularly appealing model for hydro-

phobic hydration was provided by Frank and

Evans,2 who suggested that the large entropy loss

on dissolution of a small apolar molecule in water

is due to the formation of an ordered water struc-

ture around the solute, coined by them as “ice-

berg”.3 This evocative iceberg model has, since its
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launch in 1945, inspired many researchers to explore hydra-

tion dynamics in small molecules4 and proteins,5 both exper-

imentally and by molecular dynamics simulation studies.6

It is difficult, if not impossible, to obtain dynamical infor-

mation about hydrophobic solvation by traditional structural

methods. Neutron diffraction,7,8 for instance, cannot discrim-

inate between structures fluctuating in time and (quasi-)static

structures with a distribution of conformations, because this

technique inherently integrates observables in time. NMR

experiments have shown that the rotational diffusion of water

molecules in a hydrophobic surrounding on average slows

compared with neat water.9-11 However, NMR lacks adequate

temporal resolution to detect the rotational motions directly,

and therefore the time-integrated correlation time constant of

the whole solution can be determined. This average time con-

stant can be translated into a rotation time of the hydration

shell only assuming a certain size of this hydration shell and

that the bulk is not affected.

Although ultrafast optical experiments can, in principle,

selectively map out the dynamics of a strongly coupled water

layer to a hydrophobic molecule by exploiting vibrational cou-

pling effects,12,13 such experiments have not been reported

yet. Rezus and Bakker, however, recently demonstrated that

in concentrated solutions of amphiphilic molecules carrying

several hydrophobic groups, the observed bimodal decay of

the rotational anisotropy (which is a measure for water rota-

tions) of a water vibration can be exploited to distinguish the

dynamics of water in the hydration layer from that of water in

the bulk.14,15 In these experiments, the rotational anisotropy

partly decays with a time constant of 2.5 ps and then levels

off for times longer than 10 ps. While the decay time was

independent of the solute concentration, the offset level scaled

linearly with concentration at low solute concentrations and

saturated at high concentrations. This effect was attributed to

“freezing” of the rotational water dynamics in the vicinity of

the hydrophobic groups. The mechanism behind this immo-

bilization was suggested to be the molecular jump mecha-

nism proposed by Laage and Hynes.16 In this model,

reorientational motions of water molecules do not occur in

Brownian-like small diffusional steps but in large (∼60°), quick

(∼200 fs), but relatively seldom (once in 2-3 ps) angular

jumps. This highly concerted mechanism involves the

approach of a fifth hydrogen-bonded partner of the rotating

water molecule and the temporary formation of a bifurcated

hydrogen bond. Reorientational freezing was thus explained

as resulting from a steric effect: the hydrophobic solute pre-

vents a fifth water molecule from approaching a tetrahedrally

coordinated water molecule.14,15

This interpretation triggered some controversy because

classical MD simulations,17 as well as a temperature-depen-

dent NMR study11 of water in hydrophobic environments, pre-

dicted no signature of water being significantly immobilized in

the solvation shell. In particular, according to the MD simula-

tions,17 the hydrophobic groups only take away a part of the

solid angle in which a water rotational jump could have

occurred (“excluded volume” picture), which leads to a rather

moderate slowdown of the reorientation (only by 50%).

Therefore, it was concluded that hydrophobic groups should

only be weak water reorientation retardants.

It is important to realize that rotational anisotropy mea-

surements are sensitive to the rate of switching16 rather than

to an individual switching event that takes 200 fs to occur.

However, given one order of difference between the two time

constants, there could be many other processes competing

with the molecular-jump switching (like librations or O · · · O

bending), which can partially contribute to the loss of anisot-

ropy. Therefore, the molecular-jump hypothesis calls for an

independent verification by directly observing the switching

event itself. A number of recent studies have demonstrated

that the frequency of an OH/OD oscillator is a more sensitive

probe of environmental fluctuations than the direction of its

dipole moment.18,19 MD simulations predict that the fre-

quency sweep during the switching event is ∼100 cm-1 and

that the switching probability increases drastically at blue-

shifted frequencies.20,21 The frequency sweep magnitude of

100 cm-1 and switching time of ∼200 fs require an adequate

balance between temporal and frequency resolution. This is

provided by femtosecond 2D IR correlation spectros-

copy12,13,22,23 as was demonstrated in pioneering 2D IR

experiments on molecular switching in water by Tokmakoff

and co-workers.20

In this Account, we report on a 2D IR spectroscopic study

of the OH stretching mode of water molecules in the vicinity

of the hydrophobic groups of tetramethylurea (TMU). We dem-

onstrate that, regardless of the TMU concentration, there are

two different kinds of spectral dynamics: extremely fast (<200

fs) in the blue wing of the OH-absorption spectrum and con-

siderably slower (>1 ps) in the central part of the spectrum.

The fast dynamics, which are characteristic for the molecular-

jump type of OH-bond switching, are active even at the low-

est water concentrations. The slow (>1 ps) translational

dynamics are strongly suppressed by the presence of the TMU

molecules. The magnitude of this suppression is in perfect cor-

respondence with the rotational water immobilization data,

previously measured in the transient anisotropy experi-

ments.14,15 We also present MD simulations that show a clear
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correlation between the slowed dynamics and translational
water mobility. These simulations provide a molecular basis

for the hypothesis of the switched-off molecular-jump reori-

entations near hydrophobic groups: the fifth water molecule,

which is required to form a defect state, cannot approach the

hydrogen-bonded pair to initiate the molecular jump. Conse-

quently, the rate of the jumping events sharply decreases,

which leads to rotational immobilization of water. Our find-

ings strongly suggest that water molecules in a hydrophobic

solvation shell do not possess an increased tetrahedral order-

ing compared with the bulk; rather their dynamics are differ-

ent than those in the bulk water.

Experimental Approach
The essence of 2D spectroscopy can be best explained24 in

terms of a multiple pulse hole-burning experiment (Figure 1).

In such an experiment two ultrashort pulses, separated by a

certain time delay, generate a population grating (in frequency

space)25 in the absorption spectrum of the sample, in other

words, burn multiple holes in the absorption line. These holes

evolve in time and shift toward the equilibrium position

because of spectral diffusion. As a result, the holes widen,

while their central frequencies shift to the absorption center

(color map in the central panels). Consequently, different holes

begin to overlap spectrally, and therefore the resulting hole

pattern read by the delayed “probe” pulse is not identical to

the imprinted one (left panels). Increasing the time delay

between the excitation pulses leads to a finer grating and to

increased blurring of the holes. For a given separation

between the excitation pulses, this fading also occurs for a

longer probe delay (called the waiting time). In both cases, the

correlation between the initial and final frequency modula-

tion is reduced (Figure 1a,b). Multiple hole-burning experi-

ments, performed for all possible excitation pulse delays,

result in a single 2D spectrum, which represents the correla-

tion between the initial excitation frequency along the hori-

zontal ω1-axis and the probe frequency along the vertical

ω3-axis (contour lines in Figure 1). Such mapping balances the

required temporal and frequency resolution in monitoring the

spectral diffusion processes with the ultimate temporal reso-

lution determined by the excitation probe pulse duration.

The light source for the 2D IR experiments was an optical

parametric amplifier providing 70 fs pulses centered about the

OH stretching mode of the HDO molecule at 3410 cm-1. Data

acquisition and processing were performed as described by

Fayer and co-workers.26 As a sample, we used a mixture of

TMU (Aldricht, 99% pure), heavy water (Aldricht, 99.9% pure),

and isotopically substituted water HDO, which formed a thin

∼40 µm film in a wire-guided jet. In all experiments, the HDO

concentration in D2O was kept as low as 5% to avoid effects

of intra- and intermolecular coupling of OH oscillators. For

sake of simplicity, the HDO/D2O mixture will be referred to as

water. To quantify the TMU concentration, we, following ref

15, introduce a parameter w that equals the ratio of the num-

ber of TMU and water molecules; w ranged from 0 to 1. All

experiments were carried out at ambient temperature.

Experimental Results
Figure 2 shows the IR absorption spectra of the samples in the

OH-stretch spectral region at different TMU concentrations. For

concentrations w e 0.1 (i.e., less than 1 TMU molecule per 10

water molecules), the spectra are virtually indistinguishable

FIGURE 1. Two-dimensional correlation spectroscopy as a multiple hole-burning process for short (a) and long (b) delays between the
excitation pulses. The upper panels show the photoexcitation spectrum, while the left panels depict the result of the spectral evolution of the
burnt holes (color map in the central panels) due to spectral diffusion during the waiting time T. The dashed curves are given for direct
comparison of written and read spectral holes. The contour lines show the normalized 2D spectrum resulting from multiple measurements
for numerous excitation pulse separations.
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from that of neat water. In the range 0.1 e w e 1, the spec-

trum shifts to the blue and slightly narrows. This implies that

at TMU concentrations w e 0.2, the water hydrogen-bond net-

work can accommodate the solute molecules without being

notably perturbed. The blue shift of the spectrum and its nar-

rowing with further increase of TMU concentration can be

assigned to the formation of low-dimensional water structures

in the voids between hydrophobic groups of solute. These

results are consistent with the previously reported concentra-

tion behavior of the OD absorption spectrum15 and in line

with the results of earlier NMR studies.10

Figure 3 displays experimental 2D IR spectra of the OH

stretch for a variety of waiting times and concentrations. In the

following analysis, we will focus only on the bleaching of the

fundamental transition (red contours). The 2D data can be

qualitatively interpreted by comparing the antidiagonal cross

sections of the 2D peaks (homogeneous broadening) with the

diagonal cross sections (inhomogeneous broadening).24,27 At

early waiting times, the antidiagonal cross sections are quite

narrow; for longer times, they become considerably broader.

This general trend is observed at all TMU concentrations and

shows that environmental fluctuations destroy the memory for

the frequency of the initial excitation (a process known as

dephasing28). This process has been discussed in detail for

HDO in D2O20 (our w ) 0 case) and for HDO in H2O.23 In

addition to this general trend, there is an important concen-

tration-dependent effect: the higher the TMU concentration,

the slower the dephasing. This directly shows that even mod-

erate amounts of TMU considerably slow the water dynamics.

A more careful inspection of the 2D spectra reveals the fol-

lowing phenomenon: dephasing defined as the antidiagonal

broadening of the 2D spectra is noticeably faster at the blue-

shifted ω1 frequencies compared with the red or central parts.

The difference in elongation implies that the dynamics are fre-

quency-dependent, that is, heterogeneous. Tokmakoff and co-

workers demonstrated that such heterogeneity is directly

connected to hydrogen-bond switching that occurs in the blue

spectral region, and which is accompanied by a large fre-

quency sweep.20

To quantify heterogeneity in the spectral dynamics, we

used an analysis based on the concept of hole-burning.28 For

each excitation (“hole-burning”) frequency ω1 a position of

maximum ω3
max along the ω3-axis is found (black curves in Fig-

ure 3). The diagonal position of the maxima (i.e., ω3
max ) ω1)

is characteristic for the initial excitation. With an increase of

the waiting time T, the burned frequency hole broadens and

migrates to the equilibrium position, that is, ω3
max ≡ ω0, where

ω0 is the absorption maximum. Therefore, the time evolution

of the hole can be described as

with the boundary conditions f(T ) 0,ω1) ) 1 and f(T f ∞,ω1)

) 0. The frequency-dependent function f(T,ω1) defines how

fast the hole, being initially burned at the frequency of ω1, is

equilibrated. This function can be derived directly from eq 1

by, for instance, calculating the slope value function as29

Note that in the case of Gaussian (or homogeneous) dynam-

ics, the slope value becomes frequency independent and

exactly equal to the normalized frequency-frequency corre-

lation function (ffcf).30 We stress that in a more general case

of non-Gaussian (or heterogeneous) dynamics, the slope value

function is not a ffcf and therefore should not be taken as

such. Nonetheless, the dimensionless quantities of f(T,ω1) are

quite suitable for direct comparison of hole dynamics at, for

instance, different frequencies (i.e., among different suben-

sembles) and concentrations.

The slope values at the central and blue part of the spec-

tra are presented in Figure 4. At waiting time T ) 0, the

dynamics are only slightly concentration dependent, and on

average 25% of the initial slope values have been lost (Fig-

ure 4). This loss occurs because the early dynamics are so fast

that the system evolves appreciably already within the delay

between the excitation pulses. These dynamics were previ-

ously assigned to water librations with a typical time scale of

50 fs for bulk water.18,23 There is no significant difference

between the slope values at different concentrations, both at

the central and blue side. Therefore, for the shortest waiting

FIGURE 2. Absorption spectra of the water/TMU mixtures in the
OH-stretch region. Different curves correspond to the various water/
TMU molar ratios: w ) 0 (s), w ) 0.1 (---), w ) 0.2 (- ·-), and w
) 1 (- · · ) with FWHMs of 240, 240, 210, and 180 cm-1,
respectively. The inset presents the TMU molecular structure.

ω3
max(T) ) ω0 - (ω0 - ω1)f(T, ω1) (1)

∂ω3
max(T)

∂ω1
) f(T, ω1) (2)
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times, the dynamics behind the observed line shapes can be

regarded as homogeneous and concentration independent.

At longer waiting times, the behaviors at the center and

blue side of the absorption line become different. At waiting

times of 100 and 250 fs, a notable dephasing in the blue part

of the 2D spectra (Figure 4) is observed, which is also concen-

tration dependent. For neat water (i.e., w ) 0), this behavior

was previously interpreted as a manifestation of the hydrogen-

bond switching mechanism.20 The switching of weakly

bonded (and thus higher-frequency) oscillators to the strong-

ly bonded configuration is accompanied by a frequency sweep

from the blue to the line center, which results in a remark-

able decrease of the slope value.

The spectral dynamics at the center part of the spectrum

(Figure 4a) are very different from those at the blue side. In

neat water (w ) 0), molecules excited at the central frequency

become almost equilibrated within ∼1 ps. The difference

between the dynamics in the central and blue spectrum wings

arises because the hydrogen bonds are stronger at lower fre-

quencies, which leads to suppression of the molecular-jump

reorientation mechanism.31 Only after some time, the fre-

quency of the OH oscillator drifts to the blue region due to

spectral diffusion, at which point the molecular jump mecha-

nism becomes effective.31 However, with an increase of the

TMU concentration, the equilibration dynamics slow signifi-

cantly. For instance, there is very little change in the slope val-

FIGURE 3. 2D absorption spectra of water-TMU solutions at different waiting times T and concentrations w. All spectra are normalized to
their maximal values. The red-colored contours represent bleaching of the ground state and stimulated emission from the first excited state.
The blue-colored part depicts the induced excited-state absorption, which is shifted by ∼190 cm-1 along the ω3-axis due to the
anharmonicity of the OH stretch vibration. The isocontours are drawn at 10% steps of the maximal amplitude. Thick black curves connect
maxima at each ω1 cross section.
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ues after 250 fs for w g 0.2. As a result, the central part

dynamics, being similar at short delays (T < 250 fs) for all con-

centrations, become quite dissimilar at longer times.

To study the effect of the solute on the molecular-jump

reorientation mechanism, we analyzed the dynamics on the

blue wing in more detail. By 100 fs, for neat water (w ) 0),

∼60% and ∼40% of water molecules at the blue side and

center, respectively, have undergone a relaxation event (Fig-

ure 4). If we assume the difference to originate from the most

probable switching event at the blue side, we arrive at the

20% probability in full accord with MD simulations.16 This

also fully corroborates the previous experimental observa-

tions20 on the extreme swiftness of the switching events.

The switching probability decreases when the TMU con-

centration increases: for w ) 1, there is very little additional

dynamics at T ) 100 fs compared with 0 fs, which implies

that there have been few switching events yet. The switching

events become significant at a waiting time of ∼250 fs (green

curve) and are largely complete by 500 fs where the slope

values become concentration independent. The 1 ps delay

does not add much to the dynamics differences: slope val-

ues at all concentrations are similar.

The fact that hydrogen bond switching is observed at all

concentrations suggests that switching also occurs in hydro-

phobic hydration shells. However, the blue wing of 2D spec-

tra reflects the dynamics of the switching events for those

waters that have already been prepared in configurations

prone to switching. These molecules might reside in water

nanopools formed in the voids formed by hydrophobic ends

of the TMU molecules.

A key question is then how can water dynamics, which are

just slightly retarded on the blue wing of absorption line, be

substantially slowed near the absorption line center. From pre-

vious studies on solvation dynamics in general and water

dynamics in particular, it is known which underlying molecu-

lar motions govern each particular time interval. For instance,

water librations account for a fast (<100 fs) initial decay,18,23

while oxygen-oxygen breathing and bending modes domi-

nate in the 100-200 fs region.18 After this time regime, trans-

lational diffusion of water molecules in and out the first

solvation shell becomes important.32,33 The correlation

between the times of slowing of the central part dynamics and

the translational dynamics strongly suggests that the transla-

tional degrees of freedom become suppressed at higher TMU

concentration. To substantiate this conclusion and to make a

link between spectroscopic observables and microscopic struc-

tures, we performed MD simulations on water-TMU mixtures.

Molecular Dynamics Simulations
MD simulations were performed using the GROMACS pack-

age.34 The SPC/E35 force field was used for water, and the

TMU force field was taken from Belletato et al.36 All bond

lengths were kept fixed with the LINCS algorithm, allowing the

use of 2 fs integration time steps. A twin-range cutoff of 1.0

and 1.55 nm was used for the nonbonded and electrostatic

interactions, respectively. For the long-range electrostatics, the

reaction-field method was employed34 with dielectric permit-

tivity εr ) 80. The temperature and pressure were fixed at

298 K and 1 atm, respectively. After a 2 ns equilibrium run,

the total simulation time in production phase spanned 2 ns for

each concentration with molecular snapshots saved every 20

fs.

The resulting molecular structures of the water-TMU mix-

tures are illustrated in Figure 5 for three representative con-

centrations. At low water concentration, a network of water

molecules penetrates through the voids between the TMU

molecules. The water molecules participate in hydrogen bond-

ing37 both with the carbonyl group of TMU molecules and

with other waters (Figure 6a). The decreased number of hydro-

gen bonds is consistent with the blue shift of the absorption

spectrum at high TMU concentrations (Figure 3). At higher

water concentrations, the average number of hydrogen bonds

to other waters per water molecule increases, and larger clus-

ters of water are formed, but these are all interconnected. The

most likely mechanism for such behavior is the disappear-

ance of alternative hydrogen-bonded neighbors for the water

molecules.38 This leads to reduced flexibility of the water net-

work for rearrangement and “freezes” the solution in the exist-

ing hydrogen-bond network.

To characterize the molecular translation mobility, the

mean square displacements 〈r2〉 were calculated for water and

FIGURE 4. The results of the slope analysis at different TMU
concentrations and waiting times (see the legend). In the left and
right panels, the slope values are averaged over the frequency
range ω1 - ω0 ) -25 ( 25 cm-1 and ω1 - ω0 ) 75 ( 100 cm-1,
respectively, where ω0 is the central frequency of absorption (Figure
2). The curves are guides to the eye.
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TMU molecules separately. In all cases, these were linear

beyond the first picosecond, and the diffusion constants were

extracted using the Einstein relation D ) 6t/〈r2〉. The water dif-

fusion constant decreases quickly when small amounts of

TMU are added, from the self-diffusion value of 0.23 Å2/ps to

0.033 Å2/ps at w ) 1 (Figure 6b). At the same time, the TMU

diffusion constant of ∼0.03 Å2/ps is largely independent of

the concentration for w e 1 and is considerably lower than

the self-diffusion constant of ∼0.13 Å2/ps of neat TMU. As a

result, the water-TMU mixtures reveal an interpenetrated net-

work of hydrogen-bonded molecules that are mutually immo-

bilized upon dilution with water. When equal amounts of

water and TMU are present, the diffusion constant of water

molecules is a factor of 6 smaller than that in bulk water.

The slope values at the central part of the 2D spectra,

depicted as a function of concentration (Figure 4), level off as

the average number of hydrogen bonds per water molecule

reduces from ∼3.5 to ∼3 (Figure 6a). Remarkably, a perfectly

linear correlation is observed between the reduced transla-

tional mobility and slope values at the central part of the 2D

spectra (Figure 7), which corroborates the conclusion from the

2D data analysis that the suppressed translational diffusion (as

opposed to the number of hydrogen bonds) is responsible for

the slowed frequency dynamics.

Discussion
The 2D experimental results demonstrate that water mole-

cules in concentrated TMU solutions show strongly heteroge-

neous dynamics. Even at very high TMU concentrations, a part

of the water molecules still show switching behavior, albeit

with an approximately 2 times longer time constant than in

neat liquid water (Figure 4), while another part of the water

molecules appear to be completely excluded from hydrogen-

bond configurations where switching can occur. The picture

that emerges is that we can crudely distinguish two classes of

water molecules in concentrated TMU solutions. Water mol-

ecules that still show switching are water molecules that are

surrounded by other water molecules and thus can form bifur-

cated hydrogen-bond structures required for switching. For the

molecules that do not switch, the approach of a second hydro-

gen-bonded partner is severely hindered by the presence of

TMU (“excluded volume”17) and by low translational mobil-

ity of nearby water molecules. This inhomogeneous picture of

the liquid agrees with the results from MD simulations: even

at extremely high TMU concentrations, there are nanoclus-

ters with water molecules out of the TMU solvation shell (Fig-

ure 5), for which switching can occur.

It is interesting to compare the present results to the recent

measurements of the rotational anisotropy dynamics of aque-

ous solutions of TMU. In those studies, the reorientation

dynamics of water was observed to show two distinct time

constants. At low concentrations, one of these time constants

was similar to the reorientation time constant of 2.5 ps of bulk

water; the other time constant was >10 ps. The quickly reori-

enting water molecules likely correspond to the water mole-

FIGURE 5. The molecular structure of binary mixtures at three
representative concentrations. Water is illustrated with red (oxygen)
and white (hydrogen) atoms. TMU is depicted as a gray transparent
medium to expose the hydrogen-bond network. Hydrogen bonds
between water molecules are shown as red dashed lines, while
hydrogen bonds between waters and the TMU carbonyl groups are
shown as gray dashed lines.
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cules that show switching, while the slowly reorienting

molecules correspond to the water molecules that we observe

to be excluded from switching. To explore this comparison, we

plot the central part slope values at T ) 1 ps together with the

end level (offset) of the anisotropy observed in refs 14 and 15

as a function of the concentration TMU. The result is given in

Figure 8: the slope values and the end level of the anisot-

ropy show perfect correspondence. This finding strongly sug-

gests that water molecules that are excluded from switching

are indeed the same as those showing a very slow reorienta-

tion, even at low concentrations of TMU. This fraction

increases linearly with the concentration of TMU, which shows

that these water molecules must be part of the hydration

shells of the TMU molecules. MD simulations confirm that at

the lowest TMU concentration these water molecules form

clathrate-like structures around the methyl groups. At higher

concentrations, the fraction of slowed water was observed to

saturate, especially for TMU solutions (Figure 3 of ref 14 and

Figure 8b of ref 15). This means that at high concentrations

the number of slowed OH groups per solute molecule

decreases. In refs 14 and15, this effect was explained from

the overlap of the hydration shells of the solute molecules.

However, here we find that this saturation is due to the for-

mation of water nanoclusters. At very high concentrations of

TMU, the reorientation of the fast reorienting water molecules

was observed to somewhat slow in comparison to that of neat

liquid water:15 from 2.5 to ∼3.5 ps at w ) 1. This agrees very

well with the fact that we also observe the switching time get-

ting longer for those water molecules (Figure 4, right panel).

In recent MD simulations,17 it was found that all water mol-

ecules in solutions of amphiphilic compounds undergo switch-

ing albeit somewhat more slowly than in the bulk because

part of the volume is excluded for the approach of a new

hydrogen-bonded partner. At low concentrations of TMU, this

effect is expected to lead to a maximum slowing of the switch-

ing and the reorientation by a factor of 2 only. This result

clearly does not agree with the present findings that show a

much stronger effect of hydrophobic molecules on the dynam-

FIGURE 6. The averaged number of hydrogen bonds (HB) per water molecule (a) and the translational diffusion constants (b) as functions of
concentration of the TMU-water binary mixture. Open and filled symbols stand for water and TMU, respectively.

FIGURE 7. Linear correlation between the slope values in the
central part of the 2D spectra (T ) 1 ps) and diffusion constants as
derived from MD simulations.

FIGURE 8. Slope values (circles) at the absorption line centers
(averaged over the frequency range of ω1 - ω0 ) -50 ( 50 cm-1)
at the waiting time T ) 1 ps and the anisotropy offset (diamonds)
from ref 15 as functions of concentration. The solid curve is a guide
to the eye.
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ics of the hydration shell. We thus conclude that the effect of

hydrophobic groups is 2-fold. These molecular groups not

only exclude part of the volume available for switching but

fundamentally change the hydrogen-bond dynamics of the

solvating water molecules. This can be associated with the for-

mation of a more “rigid” water-solute structure where the

average number of hydrogen bonds is lower (Figure 6a) but

the translational mobility decreases. This explanation is sup-

ported by the suppressed translational mobility of water (Fig-

ure 6b) and its excellent correlation to the hydrogen-bond

dynamics (Figure 7).

NMR studies also indicate that water molecules in the sol-

vation shells of hydrophobic molecule show different hydro-

gen-bond dynamics from neat liquid water. For instance, in

temperature-dependent NMR studies, it was found that the

activation energy for reorientation in the hydration shell was

approximately two times higher than the activation energy of

the reorientation in bulk liquid water.11,39 This shows that at

low temperatures (a part of) the hydration shells form rela-

tively rigid hydrogen-bonded structures, which become much

less rigid when the temperature is increased.

The strong effects of hydrophobic molecular groups on the

hydrogen-bond and orientational dynamics do not find their

counterpart in the structure of the liquid. Neutron scattering

studies show that hydrophobic solutes have surprising little

effect on the oxygen-oxygen distances.7,8 Apparently, water

molecules can change their hydrogen-bond dynamics and

lose their reorientation ability without strongly disrupting the

local structure (i.e., the oxygen-oxygen distance). It should be

noted, however, that the fraction of water molecules that are

slowed is relatively small: only two water molecules per

methyl group14 are affected. The effects of hydrophobic sol-

utes on water dynamics are thus very short ranged, and it is

to be expected that a change of the oxygen-oxygen distance

would require a much longer range effect, involving many

hydration shells.

Concluding Remarks
In this Account, 2D IR spectroscopy and MD simulations have

been used to study hydrophobic solvation. The utilization of

2D spectroscopy allowed us to combine a ∼70 fs temporal

resolution with high spectral selectivity. As a result, we suc-

ceeded in the separation of two different types of hydrogen-

bond dynamics in water/TMU mixtures. The first type, “fast”

(∼100 fs) dynamics, are connected to the molecular-jump

water reorientation, while the second type, “slow” dynamics,

are associated with translational mobility of water. According

to our results, molecular-jump reorientations are still possi-

ble at least for some water molecules in the solution. How-

ever, the rate of the reorientation events decreases

dramatically due to a substantial decrease in the water trans-

lational mobility near the hydrophobic groups.

When Frank and Evans coined the term “iceberg”, they

referred to a microscopic region around a hydrophobic mol-

ecule, in which “water molecules are tied together in some

sort of quasi-solid structure”.2 Later, the word “iceberg” often

began to be taken literally: the hydrating water molecules

were assumed to form an ice-like structure, that is, more tet-

rahedrally ordered than bulk water. This picture was not sup-

ported by theoreticians40 and experimentalists8,11 alike who

came to the conclusion that the hydrogen bonds in the hydra-

tion shell of nonpolar solutes are either more broken or do not

differ much from those in bulk water.11 On the other hand,

NMR9,10 and time-resolved IR studies14,15 indicated that the

rotational mobility of water molecules in a hydrophobic sol-

vation shell decreases, bearing some reminiscence to iceberg

formation. The 2D IR experiments and MD simulations pre-

sented in this Account seem to resolve this contradiction. The

water molecules in the hydrophobic shell are not ice-like fro-

zen because they have at least librational degrees of freedom

and some of them can even rotate. However, their transla-

tional mobility is severely compromised and therefore defect

configurations required for molecular switching are lacking, in

agreement with results of rotational anisotropy experiments.

In this respect, our 2D spectroscopic inquest also provides a

microscopic foundation for a previously published empirical

model,41 which proposed that the hydrogen-bond network

around hydrophobic groups is not more rigid compared with

the bulk but that the hydrogen bond dynamics in the two

cases are different. This proposition echoes a recent point

regarding the question of whether a hydrogen bond can be

defined without considering its dynamics.42
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cially supported by the “Nederlandse Organisatie voor Weten-

schappelijk Onderzoek (NWO)”. We would like to thank

Damien Laage and Casey Hynes for many useful discussions
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